

Partnering Opportunities in 9x

William Weber

Director For Interplanetary Network Directorate

Major Elements of IND

- Deep Space Network (DSN)
- Next Generation DSN
 - Array-based
 - Optical
- Multi-mission tools and services
- Mission IT and networking
- Needed technologies

The Deep Space Network

Comprises three major tracking sites around the globe to provide continuous communication and navigation support for the world's deep space missions.

NASA/JPL

Madrid Operated by INSA for INTA **CSIRO**

Current DSN Areas of Emphasis

Near-Term

- Refurbish and modernize the existing assets and infrastructure
 - Electronics, software, antenna mechanical, facilities, power
- Reduce operations and maintenance costs
 - Scheduling of the assets and services
 - Monitor and control
 - Higher degree of automation

Long-Term

Augment existing antenna assets with more 34m
antennas or their equivalent in arrays of smaller antennas

Longer-Term

- Optical communications

Key DSN Technology Areas

- Ka-band communications
 - 4x performance gain and increased bandwidth
- High power spacecraft comm
 - Take advantage of Project Prometheus
- Large arrays of small antennas
 - Earth infrastructure of the future
- Optical communications
 - New infrastructure for high bandwidth
- Error-correcting codes
 - Protect data sent through deep space
- Data compression
 - Use links efficiently
- Ultra-stable clocks (including spaceborne)
 - Perform precision navigation
- Communications standards
 - Guarantee quality and interagency cross-support

Synthesizing Large Antenna Apertures

- A new paradigm for microwave, large-aperture synthesis
- Requirements:
 - Low cost, high performance antennas
 - Low cost, low noise amplifiers
 - Low cost, reliable, cryogenics
 - Mass production efficiencies
 - Potential for significantly lower cost than large antennas

Optical Communications

- Optical comm is a key element of the DSN vision
 - High bandwidth for trunk lines from exploration targets
 - High performance for extreme outer planet missions
- Technology is ready for deep space demo
- Missions of opportunity need to be identified

DSMS Program's Optical Comm Telescope Laboratory

Prototype optical comm payload

Multimission Ground System and Services Advanced Multimission Operations System

- AMMOS is a product line developed and provided by the MGSS Program Office
 - Multi-mission software tools for mission operations
 - Applied to a wide variety of planning-intensive missions, such as deep space and astrophysics missions
 - Sources include COTS, JPL, and other NASA centers
- Functional areas include:
- Mission Design
- ➤ Navigation
- Science Instrument operations
- Mission Planning & Spacecraft Sequencing
- Operations Configuration Management
- ➤ Mission Assurance

- Spacecraft command, control and monitoring
 - Command and telemetry processing
 - Flight system performance analysis
 - Fault detection and alarm
- Data Management and Accountability
- DSN Scheduling
- Mars Relay Operations planning and scheduling

Multimission Ground System and Services Advanced Multimission Operations System

Possible additional Industry provided solutions for AMMOS:

- ✓ Data Management File system management
- ✓ Data backup systems
- ✓ Configuration management
- ✓ Data and schema registry
- ✓ Product tracking and accountability
- ✓ Workflow management
- ✓ Common Visualization software
- ✓ Image format conversion
- ✓ Very large image display, pan and zoom

- ✓ Resource management and scheduling
- ✓ Test automation tools
- ✓ Service Oriented Architecture (SOA) solutions such as:
 - Platform (application servers)
 - Consulting services
 - Information modeling
 - Messaging Systems

Mission Software, Computing and Networking Office (980)

Objectives:

- Increase the reliability of JPL mission software
- Develop computer science based functions and products
 - Cross-cutting, serving a broad spectrum of JPL missions

Industry Opportunities

- Low-TRL technology developments
 - Partnering as co-investigators on competed research proposals
- Infusion of technology into missions through mid-TRL maturation
- Example technology areas:
 - Software engineering tools, spacecraft autonomy, event detection and response, flight computing architectures, operations automation, robotics autonomy, smart instruments, supercomputer-based modeling, space network protocols and management, knowledge management, ISHM, ...

